41 research outputs found

    Out-of-plane focusing grating couplers for silicon photonics integration with optical MRAM technology

    Get PDF
    We present the design methodology and experimental characterization of compact out-of-plane focusing grating couplers for integration with magnetoresistive random access memory technology. Focusing grating couplers have recently found attention as layer-couplers for photonic-electronic integration. The components we demonstrate are designed for a wavelength of 1550 nm, fabricated in a standard 220 nm SOI photonic platform and optimized given the fabrication restrictions for standard 193-nm UV lithography. For the first time, we extend the design based on the phase matching condition to a two-dimensional (2-D) grating design with two optical input ports. We further present the experimental characterization of the focusing behaviour by spatially probing the emitted beam with a tapered-and-lensed fiber and demonstrate the polarization controlling capabilities of the 2-D FGCs

    Multiple-Locus Variable Number Tandem Repeat Analysis of Staphylococcus Aureus: Comparison with Pulsed-Field Gel Electrophoresis and spa-Typing

    Get PDF
    (MRSA) is required to study the routes and rates of transmission of this pathogen. Currently available typing techniques are either resource-intensive or have limited discriminatory ability. Multiple-locus variable number tandem repeat analysis (MLVA) may provide an alternative high throughput molecular typing tool with high epidemiological resolution.-sequence typing and PFGE, at the MLVA complex level with group separation values of 95.1% and 89.2%. MLVA could not discriminate between pig-related MRSA strains isolated from humans and pigs, corroborating the high degree of relationship. MLVA was also superior in the grouping of MRSA isolates previously assigned to temporal-spatial clusters with indistinguishable SpaTypes, demonstrating its enhanced epidemiological usefulness. that yields discrete and unambiguous data that can be used to assign biological meaningful genotypes and complexes and can be used for interlaboratory comparisons in network accessible databases. Results suggest that MLVA offsets the disadvantages of other high discriminatory typing approaches and represents a promising tool for hospital, national and international molecular epidemiology

    Low-loss hybrid silicon tapers

    No full text
    Two types of hybrid silicon tapers are studied. Single taper loss is 0.3 - 0.5 dB, enabling integration of III/V actives on silicon-on-insulator passive circuitry with low loss

    Towards maximum energy efficiency of carrier-injection-based silicon photonics

    No full text
    We present carrier-injection-based photonic switches, engineered for optical pulse distribution with maximum energy efficiency. We apply small-signal analysis and for the first time large-signal modelling to methodically optimize the switches for minimum energy consumption and to classify the electronic contributions from resistance, capacitance, and diode. We present optimized electronic switch activation, which yields a sixfold reduction in energy consumption and we show how static power consumption becomes a negligible factor for optical pulse switching. We demonstrate that with adjusted phase shifter dimensions, MZI-based switches can operate with additional 50% enhanced energy efficiency with down to 4 pJ per switching operation. We show even further efficiency improvement using ring-based designs, allowing an additional improvement of 50% in energy efficiency and we discuss the trade-off between efficiency and optical bandwidth associated to the Q-factor. We benchmark carrier-injection-based switches together with comparable technologies of the silicon photonics platform and identify carrier-injection to be the most suitable technology for pulse switching applications
    corecore